Singular Limit of Navier-Stokes System Leading to a Free/Congested Zones Two–Phase model

نویسندگان

  • Didier Bresch
  • Charlotte Perrin
  • Ewelina Zatorska
چکیده

The aim of this work is to justify mathematically the derivation of a viscous free/congested zones two–phase model from the isentropic compressible Navier-Stokes equations with a singular pressure playing the role of a barrier. Titre et résumé en Français. Modèle bi-phasique gérant zones libres/zones congestionnées comme limite singulière d’un système de Navier-Stokes compressible. Le but de ce papier est de justifier mathématiquement l’obtention d’un modèle biphasique visqueux gérant zones libres/zones congestionnées comme limite singulière des équations de Navier-Stokes compressible barotrope à l’aide d’une pression singulière jouant le rôle d’une barrière. Ce type de systèmes macroscopiques pour modéliser le mouvement de foule a été proposé dans de nombreux papiers. Le lecteur interessé est renvoyé par exemple au papier de review [B. Maury, Actes des Colloques Caen 2012-Rouen 2011]. Mathematics Subject Classification (2010). Primary 35Q35; Secondary 74N20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the problem of singular limit of the Navier - Stokes- Fourier system coupled with radiation or with electromagnetic field

We consider relativistic and ”semi-relativistic” models of radiative viscous compressible Navier-Stokes-Fourier system coupled to the radiative transfer equation extending the classical model introduced in [1] and we study some of its singular limits (low Mach and diffusion) in the case of well-prepared initial data and Dirichlet boundary condition for the velocity field. In the low Mach number...

متن کامل

Inviscid Incompressible Limits of the Full Navier–Stokes–Fourier System

We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds and Péclet numbers, with ill prepared initial data on R 3. The Euler-Boussinesq approximation is identified as the limit system.

متن کامل

An Asymptotic Limit of a Navier-stokes System with Capillary Effects

A combined incompressible and vanishing capillarity limit in the barotropic compressible Navier-Stokes equations for smooth solutions is proved. The equations are considered on the two-dimensional torus with well prepared initial data. The momentum equation contains a rotational term originating from a Coriolis force, a general Kortewegtype tensor modeling capillary effects, and a density-depen...

متن کامل

The Sharp Interface Limit of a Phase Field Model for Moving Contact Line Problem

Abstract. Using method of matched asymptotic expansions, we derive the sharp interface limit for the diffusive interface model with the generalized Navier boundary condition recently proposed by Qian, Wang and Sheng in [9, 11] for the moving contact line problem. We show that the leading order problem satisfies a boundary value problem for a coupled Hale-Shaw and Navier-Stokes equations with th...

متن کامل

Distributional equation in the limit of phase transition for fluids

We study the convergence of a diffusive interface model to a sharp interface model. The model consists of the conservation of mass and momentum, where the mass undergoes a phase transition. The equations were considered in [W3] and in the diffuse case consist of the compressible Navier– Stokes system coupled with an Allen–Cahn equation. In the sharp interface limit a jump in the mass density as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014